欧拉积分有两类,很多与幂、阶乘有关的反常积分都可以利用欧拉积分表示,而这两类欧拉积分又可以相互表示。它的重要性也好,应用的广泛性也好,有太多书在讲了,这里就不再拓展。

第一类欧拉积分 B函数(欧拉贝塔函数-Euler's Beta Function)

$B(a,b)= \int_0^1 x^{a-1}(1-x)^{b-1}dx$

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/59bc6d07-ca65-4c65-8590-444f346f8347/Untitled.png

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/2a296630-59cb-42bd-952a-0eb1393ac2fe/Untitled.png

第二类欧拉积分 函数(欧拉伽马函数-Euler's Gamma Function)

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/8ef2e8f2-b628-476c-9926-24ee71e89509/Untitled.png

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/f67c8a91-55e1-4831-93bc-fcc283a960b8/Untitled.png

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/132b596a-08c9-400a-988f-34c8bd4a45dd/Untitled.png

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/9940e525-02dc-433a-9692-0048d19dc701/Untitled.png