1. 施密特正交化

已知 $\alpha_1,\alpha_2,\alpha_3$

$\beta_1=\alpha_1$

$\beta_2 = \alpha_2-\cfrac{\alpha_2^T\beta_1}{\beta_1^T\beta_1}\beta_1$

$\beta_3=\alpha_3-\cfrac{\alpha_3^T\beta_1}{\beta_1^T\beta_1}\beta_1-\cfrac{\alpha_3^T\beta_2}{\beta_2^T\beta_2}\beta_2$

2. 预先正交化:在求解向量时取正交化的解

记得写上,经检验,$\alpha_1,\alpha_2$ 正交。

3. 利用几何意义(适用于已知两对向量正交)

适用情况:已知 $\alpha_1,\alpha_2$ 是同一特征值的线性无关的特征向量,$\alpha_3$ 是另一特征值的特征向量

$\alpha_3$ 与 $\alpha_1,\alpha_2$ 显然正交,需要将 $\alpha_1,\alpha_2$ 进行正交化

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/7620a25f-7c75-46d0-b2b3-ec317872b518/75FFF4D5-D7C4-458A-BF1C-1D132B639F98.jpeg

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/1cc7b1f7-8c30-4685-9ddf-51b78b978992/FC7C1BC0-2439-4E01-8582-360B3B336808.jpeg