$$ \lim_{n\to+\infty } \sum_{i=1}^{n} \frac{1}{n} f(\frac{i}{n})=\int_{0}^{1}f(t)dt $$
$$ (1) \quad n+i(a_n+b_i \ , ab\ne0) \Rightarrow n(1+\frac{i}{n}) $$
$$ (2) \quad n^2+i^2 \Rightarrow n^2[1+(\frac{i}{n})^2] $$
$$ (3) \quad n^2+ni \Rightarrow n^2(1+\frac{i}{n}) $$
$$ (4) \quad \frac{i}{n} $$
$$ n^2+i $$
$$ (\frac{i}{n} )^2 < \frac{i^2+1}{n^2} < (\frac{i+1}{n} )^2 $$
$$
\lim_{n\to+\infty } \sum_{i=1}^{n}f(\frac{x}{n})\frac{x}{n}=\int_{0}^{x}f(t)dt=F(x)
$$