定义

$$ 满足AA^T=A^TA=E的矩阵A是正交矩阵 $$

推论

$$ \begin{aligned} A是正交矩阵 & \Leftrightarrow \textcolor{red}{A^{-1} = A^T } \\ & \Rightarrow |A|^2=1 \\&\Rightarrow A^{*}也是正交矩阵 \end{aligned} $$

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/0b516946-44db-4639-bfd7-e72653c201ab/3A9C41E9-F1A3-45C5-B10D-0DF5C8EED3E3.jpeg