$$ \Gamma(\alpha)= \int_{0}^{+\infty} x^{\alpha-1}e^{-x}dx= \begin{cases} \Gamma(\alpha+1)=\alpha \Gamma(\alpha) \\ \Gamma(n+1)=n! \\ \Gamma(\frac{1}{2})= \sqrt[]{\pi} \end{cases} $$

形如伽马函数,但e的幂非-x,则通过换元处理。

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/9bc4d289-806e-4f5f-bea3-ad2f4a68d58a/2EE04700-E5D8-4980-800D-23DA2C7FC286.jpeg