‣
$$ 定理1:若\lim_{x\to x_0} \varphi(x)=a, \lim_{t\to a} \frac{f(t)}{g(t)}=1,则\lim_{x\to x_0} \frac{\int_a^{\varphi(x)} f(t)dt}{\int_a^{\varphi(x)} g(t)dt}=1 $$
$$ 比如说,常见a=0,则上述定理等价于,上限在x\to 0时,趋向于0,\\ 同时f(x)\sim g(x),那么\lim_{x\to 0}\int_a^{\varphi(x)} f(t)dt \sim \lim_{x\to 0}\int_a^{\varphi(x)} g(t)dt $$
$$ 例如:\int_0^x sint dt \sim \int_0^x x dt = \frac{1}{2}x^2 $$
$$ 或者,a=0,且\lim_{x\to 0} f(x)=A \ne 0,那么\int_a^{\varphi(x)} f(t)dt \sim \int_a^{\varphi(x)} Adt = A \varphi(x) $$
$$ 例如:\int_0^xcos^2t dt \sim \int_0^x1dt =x $$
$$
定理2:当x\to 0时,无穷小\alpha(x) \sim \beta(x),且 \lim_{x\to \cdot} \cfrac{f(x)}{x^m}=c\ne0 \ \ (m \ge 0),\\ 则 \int_{0}^{\alpha}f(t)dt \sim \int_{0}^{\beta}f(t)dt
$$
$$ 例如:\int_{0}^{\sin x} t dt \sim \int_{0}^{x} t dt = \frac{1}{2}x^2 $$